Your data. Your choice.

If you select «Essential cookies only», we’ll use cookies and similar technologies to collect information about your device and how you use our website. We need this information to allow you to log in securely and use basic functions such as the shopping cart.

By accepting all cookies, you’re allowing us to use this data to show you personalised offers, improve our website, and display targeted adverts on our website and on other websites or apps. Some data may also be shared with third parties and advertising partners as part of this process.

Background information

On the trail of running: the foot – a complex movement puzzle

Michael Restin
29/4/2022
Translation: Katherine Martin
Pictures: Thomas Kunz

I want to improve my understanding of the human gait. And to do so, I need to delve into detail. In this interview, I chat to Professor of Sports Medicine, Dr Johannes Scherr about some anatomy basics, collapsed midfeet and the fact that sneakers aren’t for running.


At the end of the day, our feet have to support our entire body weight. How is this weight distributed when we’re standing?
The main weight-bearing points are the sesamoid bones under the first metatarsal head, the point above the metatarsophalangeal joint of the little toe and the heel.

What would those others be?

When pressure is placed on the foot, the tibialis posterior tendon on the back of the posterior tibial muscle supports the medial longitudinal arch. The big toe flexor, or musculus flexor hallucis longus, and the long toe flexor, or musculus flexor digitorum longus, also start in the lower leg. They form part of the lower calf muscles.

We humans take our first steps on flat feet after about a year. How do our feet go on to develop?
The foot should be fully developed by age 11 or 12. Although, it depends on the kind of pressure it’s subjected to. After all, the longitudinal and transverse arches are also tightened via muscles. The more they’re trained, the earlier they take shape.

How strong are the forces at work when we’re walking and running?
The skeletal system isn’t the only deciding factor here. The tendons, which ultimately work in the same way as springs, come into play, too. It depends how fast you walk and how well cushioned your foot is.


In the video below, you can see what happens when the foot of a top athlete hits the ground. In sprinters, extreme peaks in force occur within 100 milliseconds. Ground reaction forces equivalent to up to five times their body weight, in fact. In world-class marathon runners, the curve is flatter, with longer contact times. Over their running distance, they absorb triple their body weight 25,000 times.

So the feet aren’t necessarily the first parts of the body to give up the ghost.
Usually, it’s the entire chain of movement. Everything’s related and begins, for example, with a midfoot collapse. This causes the knee to rotate inward, which may eventually lead to problems with the hips or spine.


Running involves team work between different body parts. If one is weakened, the others have to compensate. The process often comes creeping in – and it’s so individual that the whole system has to be considered when investigating the causes. It all depends on the interplay.

So I’m not always able to prevent stuff like that through exercise.
Exactly. You can also just be unlucky. To a certain extent, exercising is helpful. If it’s not possible to do that anymore, the bone can be corrected surgically. Women are affected by this more often. Being overweight or wearing unsuitable footwear – think too-high heels, shoes that are very narrow at the toes, or shoes that are too small – are seen as risk factors.

Are women more frequently affected by other foot complaints too?
Pes planovalgus or flat feet are three times more common in women. This has to do with anatomical differences and begins all the way up in the hips. The pelvis is wider and slightly tilted. By way of the thigh bones, this impacts the knees, often leading to knock knees. As a result, the lower leg causes the formation of a skew foot more often.

Lack of exercise, strain and bad footwear are high up on Dr Google’s list of causes of foot issues.
If you don’t move enough and the foot isn’t put to use, the muscles obviously begin to waste away: inactivity atrophy. When I put my feet up, they don’t even need to hold my standing weight. So, it’s clear that they’ll keep getting weaker.

It’s not just the foot that tires out. The material eventually does, too. Will my beat-up favourite shoes become a problem for me when doing sport? Do I need different kinds of shoes as an occasional jogger?
Having the right shoes is hugely important. There, I’d say: it’s better to have a well-fitting pair that’s replaced on time than to be experimental. And it’s not the case that expensive shoes are necessarily better.


One thing is clear: it’s best to have healthy feet. So, the next step of this journey will be about how to treat them well. I’ll be heading to running school with the physiotherapist and track and field athlete Pascale Gränicher. On top of that, I’ll find out that during foot exercises, even the smallest of movements can pose big challenges.

29 people like this article


User Avatar
User Avatar

Simple writer and dad of two who likes to be on the move, wading through everyday family life. Juggling several balls, I'll occasionally drop one. It could be a ball, or a remark. Or both.


Background information

Interesting facts about products, behind-the-scenes looks at manufacturers and deep-dives on interesting people.

Show all

These articles might also interest you

  • Background information

    Walking on the right track via RICE and stable ankles

    by Michael Restin

  • Background information

    Why a running analysis was worthwhile for me – and might be something for you too

    by Siri Schubert

  • Background information

    Walking the line? My adventures on a balance pad

    by Michael Restin